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A turbulent flow over a curved hill 
Part 1. Growth of an internal boundary layer 

By V. BASKARAN,? A. J. SMITSSAND P. N. JOUBERT 
Department of Mechanical Engineering, University of Melbourne, Parkville 3052, Australia 

(Received 18 February 1985 and in revised form 15 January 1987) 

Two experiments were performed to study the response of turbulent boundary layers 
to sudden changes in surface curvature and pressure gradient. In  the first experiment, 
the behaviour of a boundary layer negotiating a two-dimensional curved hill was 
examined. Prior to separating on the leeward side of the hill, the layer experienced 
a short region of concave surface curvature, followed by a prolonged region of convex 
surface curvature. The corresponding pressure gradient changed from adverse to 
favourable, and back to adverse. In the second experiment, the flow over a 
symmetrical wing was studied. This wing had the same profile as the hill with a very 
similar pressure distribution. The obvious difference between the two experiments 
was the use of leading and trailing edge plates in the hill flow. The results show that 
an internal layer forms in the flow over the curved hill, and that this internal layer 
displays many similarities to the boundary layer observed on the free wing. The 
internal layer grows as an independent boundary layer beneath a turbulent free-shear 
layer, and as it  develops it establishes its own wall (inner) and wake (outer) regions. 
The perturbation responsible for initiating the growth of the internal boundary layer 
seems to be an abrupt change in surface curvature. Once formed, the internal 
boundary layer dictates the skin-friction distribution and the process of separation 
over the hill. The effect of the perturbation in wall curvature appears to be different 
from that due to prolonged convex curvature in that the former affects the flow in 
the vicinity of the wall instantly, while the latter affects the flow far away from the 
wall only after the flow turns through some angle. Physical explanations are offered 
for the qualitative difference between the effects of mild and strong convex curvature, 
and for the saturated behaviour observed in strongly curved flows. Finally, the results 
are compared with the behaviour of wind flow over terrestrial hills. In  both cases, 
the internal layer dominates the flow behaviour, even though the scaling laws for the 
flows over actual hills are not obeyed in the present case. A qualitative comparison 
reveals that the present internal layer is thicker than that reported in meteorological 
flows. This appears to be due to the effect of curvature, which perturbs the wake 
region of the internal layer in the present hill flow, while in meteorological studies 
the effect of curvature is generally small enough to be neglected. 

1. Introduction 
The 1980-81 Stanford Conference (Kline, Cantwell & Lilley 1982) demonstrated that 

many shear flows could not be predicted adequately by existing calculation methods. 
Most of these flows were distorted or interacting shear layers, otherwise known as 
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FIQURE 1.  Experimental flow configurations. (a) Two-dimensional curved hill; (a) free wing. LE, 
leading edge; TE, trailing edge. 

‘complex ’ flows. In  recent years, therefore, considerable attention has been focused 
on complex flows, and their behaviour under different extra strain rates (rates of 
strain additional to simple shearing) has been the subject of many experimental 
investigations (see, for example, Dumas & Fulachier 1982). These extra strain rates 
include those due to severe pressure gradients, streamline curvature and divergence, 
system rotation, bulk compression, separation and reattachment. 

Here, we present experimental results obtained in two complex flows involving 
pressure gradients, streamline curvature and separation. In  the first experiment, a 
turbulent boundary layer flows over a two-dimensional curved ‘hill’ (see figure 1 a) .  
The boundary layer forms on a flat plate and then experiences a short region of 
concave curvature before encountering a prolonged region of convex curvature. The 
corresponding pressure gradient changes from adverse to favourable and back to 
adverse, and eventually the flow separates. In the second experiment, a turbulent 
boundary layer forms on a ‘free wing’ (figure l b ) .  Here, the boundary layer 
experiences only convex curvature, and the pressure gradient changes from favour- 
able to adverse. Again, the flow eventually separates. The wing has the same profile 
as the hill, and over the convex region the streamwise pressure distributions for the 
two cases, shown in figure 2, display only small differences. (The small jump at  the 
summit appears to be real, since it disappeared during an attempt to set a zero 
pressure gradient over the hill using flexible sidewalls.) The difference between the 
two configurations is the finite boundary-layer thickness at the foot of the hill. As 
a result, at the point of maximum height, the ratio of shear-layer thickness to radius 
of curvature SIR is approximately 0.05 on the curved hill and 0.012 on the free wing. 

The work reviewed by Bradshaw (1973) demonstrated that a small amount of 
streamline curvature can have a significant effect on the behaviour of a turbulent 
flow, and that the effect could be characterized by the ‘curvature parameter’ SIR. 
Small amounts of convex curvature (SIR x 0.01), for example, significantly reduce 
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FIGURE 2. Wall-static-pressure distributions: 0, curved hill; 0, free wing. 

the skin-friction and heat-transfer coefficients (5-15 yo). However, recent experiments 
on strong convex curvature have shown that for 6 / R  > 0.04 the flow response appears 
to reach a 'saturated' state (see Gillis & Johnston 1983 or Baskaran 1983 for a 
review). 

In the two experiments considered here, the curvature effects range from mild to 
strong, and the results show that an 'internal layer' forms in the flow over the hill. 
This layer shares many similarities with the boundary layer on the free wing, despite 
the differences in the initial boundary-layer development and the external flow 
conditions. It appears that the internal layer dictates the overall flow behaviour on 
the hill almost independently of the external-flow presence. Similar internal layers 
appear to be responsible for the saturated behaviour observed in strongly curved 
flows. In this paper, Part 1, we examine the similarities between the two flows and 
discuss the implications for a wider understanding of the effect of convex curvature. 
The behaviour of the hill flow was discussed in detail by Baskaran (1983), and the 
effect of streamline curvature as such will be presented separately as Part 2. 

Internal layers have been widely observed in turbulent boundary layers suffering 
perturbations (Tani 1968; Smits & Wood 1985) and they are associated with abrupt 
changes in local wall boundary conditions such as roughness, suction or blowing, wall 
heat flux, surface curvature or by a change in streamwise pressure gradient. 

A change in streamwise pressure gradient initially affects the flow in the inner or 
wall region of the boundary layer, while leaving the flow in the outer or wake region 
largely unaffected. The response of the inner region depends on the strength and the 
sense of the pressure gradient, which in turn determines the state of the flow 
(turbulent or non-turbulent, attached or separated). Under moderate conditions 
(that is, when the logarithmic law of the wall continues to hold after the perturba- 
tion), a sudden change of streamwise static pressure changes the velocity gradient 
and the turbulent stresses in the inner region, and this modified flow forms an internal 
layer. Under strong conditions, the behaviour differs considerably from that described 
above, and separation or relaminarization can occur. 

Internal layers in strongly accelerated flows were discussed by Blackwelder & 
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Kovasznay (1972), and Narasimha & Sreenivasan (1973). In these flows, the 
stabilizing influence of a favourable pressure gradient causes the flow in the inner 
region to adopt a quasi-laminar state, via a reverse transitional state. Consequently, 
the logarithmic region vanishes. When the favourable pressure gradient is completely 
relaxed, the flow reverts to the turbulent state as indicated by the reappearance of 
the logarithmic region, accompanied by a large increase in the intermittency and 
Reynolds stresses close to the wall, and a new internal layer was shown to grow 
following a natural laminar-turbulent retransition. 

Because the nature of the internal layer is different under moderate and strong 
conditions, we label them as internal layers of the first and second kind, respectively. 
The total head and the turbulent stresses change rapidly along a mean streamline 
inside the internal layer in both kinds, while these quantities remain nearly frozen 
along an outer-layer streamline. Structural parameters, such as the ratio of the shear 
stress to the turbulent kinetic energy, appear to be almost unaffected over most of 
the shear-layer thickness. 

When the sign of the pressure gradient changes more than once, as in the work 
of Tsuji & Morikawa (1976), new and different phenomena appear. In that work, a 
turbulent boundary layer on a flat plate experienced a streamwise pressure gradient 
alternating in sign (zero to adverse, to favourable, to adverse, to favourable). To begin 
with, the flow in the inner region was perturbed by the adverse pressure gradient, 
and in the subsequent favourable-pressure-gradient region the logarithmic law of the 
wall disappeared. When the pressure gradient changed sign again to adverse, an 
internal layer appeared and ‘knee points’ formed in the profiles of Reynolds stresses. 
The recovery of the law of the wall was slow and occurred when the pressure gradient 
again changed sign from adverse to favourable farther downstream (about 25 
initial-boundary-layer thicknesses). 

In contrast to the widely observed existence of internal layers in flows perturbed 
by changes in pressure gradient, the existence of internal layers in curved flows is 
not yet a well established phenomenon. The notion of a ‘sub-boundary layer’ was 
suggested by Bradshaw (1973) in connection with the strongly curved flow of So & 
Mellor (1972). More recently Gillis & Johnston (1983) described the growth of an 
‘active shear-stress layer’ following the application of strong convex curvature in a 
zero pressure gradient. This layer was shown to dominate the whole flow behaviour, 
and it was suggested that it formed as a result of the reduction in lengthscale in the 
outer region. However, the changes in the outer layer were not observed till the flow 
had turned through 13O (Gillis & Johnston 1983, figure 9), while changes in the inner 
region appeared at  the onset of curvature. The changes in the outer layer followed 
later, even though the effects of streamline curvature were stronger there. 

The internal layer in the present hill flow is different from all the internal layers 
described so far, in that it begins to grow in a region of a strong favourable pressure 
gradient and surface curvature change (concave to convex), where the normal 
stresses change across the whole layer rather than simply in the inner region. In  
addition, the flow in this region is in a reverse transitional state and the law of the 
wall is absent. We present evidence to show that the internal layer grows as an 
independent developing boundary layer surrounded by an external free turbulent 
flow, suggesting a bifurcation of the initial boundary-layer structure. The primary 
perturbation responsible for triggering the internal layer appears to be the abrupt 
change in surface curvature. 

The configuration shown in figure l ( a )  resembles the flow over a hill, and 
comparisons with meteorological studies are of some interest. These studies include 
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experimental work (Britter, Hunt & Richards 1981 ; Bradley 1980) and theoretical 
studies (Jackson & Hunt 1975; Taylor 1977). The flow behaviour was shown to be 
dominated by the perturbations that occur in an internal layer, whose thickness is 
given by the height above the hill surface where the perturbation in the mean velocity 
is a maximum. Since the present hill experiment was designed to investigate the effect 
of curvature, the scaling laws for the flow over hills were not obeyed. For instance, 
the ratio of the upwind boundary-layer thickness to the height of the hill 6 /h  B 1 
in the above-cited studies, while it is only 0.4 in the present case. However, in all 
the hill flows it is the internal layer that dominates the flow behaviour, and therefore 
a qualitative comparison with the present results is given in $5. 

2. Apparatus and techniques 
The work was carried out in the large, closed-return wind tunnel at Melbourne 

University. The working section is octagonal, measuring 1.68 m x 1.3 m with a length 
of 6.54 m. The walls are slotted along the entire length of the working section with 
an open-to-closed area ratio of 4.9 % to reduce wall interference effects. The adjustable 
sidewalls were set to give a negligible longitudinal pressure gradient along the 
centreline of the empty tunnel. The free-wing model was a 32 % thick biconvex airfoil 
with a radius of curvature of 1.08 m and a chord length of 1.284 m. The curved-hill 
model was constructed by attaching two flat plates 0.987 m and 1.781 m long to the 
leading and trailing edges of the free wing. The corners between these plates and the 
free wing were faired to give radii of curvature of -0.4 and -0.48 m respectively 
(see figure la ) .  The models were positioned vertically and the slots in the roof and 
floor of the tunnel were sealed to prevent end leakage. 

Trip wires were used to promote transition. A 1.2 mm diameter trip wire was 
located 110 mm from the leading edge of the free wing, and for the curved hill a 2 mm 
diameter trip wire was located 153 mm from the leading edge of the front flat plate. 
The measurements were taken at a nominal free-stream velocity of 20 m s-l 
( Uref/v = 1.33 x lo6 m-l). Skin-friction coefficients were obtained using Preston 
tubes with the calibration of Pate1 (1964  and Clauser charts using constants of 0.41 
and 5.2 (de Brederode & Bradshaw 1974). The mean flow field was explored using 
Pitot tubes, and the wall distance was corrected for displacement effects by the 
addition of 15% of probe diameter. Turbulence measurements were made using 
Melbourne University unlinearized constant-temperature hot-wire anemometers. 
Both normal and crossed hot wires were employed. All measurement locations were 
referred to a (8 ,  n, z )  curvilinear coordinate system fixed in the surface of the model 
with its origin at the leading edge of the front flat plate. The measurement locations 
on the free wing were also referred to this origin (see figure 1). 

Some measurement procedures in the two experiments were slightly different. 
For the flow over the free wing, the Preston tube diameters were 0.6mm and 
1.07 mm. Mean velocity profiles were obtained using a flattened Pitot tube with a 
height of 0.34 mm. The local mean static pressure p varied with wall distance n 
because of streamline curvature, and it was calculated from the wall static pressure 
p, using Bernoulli’s equation in the normal direction and the irrotationality 
condition. So & Mellor (1972) showed that with these assumptions Up = Up, ekn for 
k 4 n, where U p  is the local potential velocity, Up, is the potential velocity at the 
wall and k is the curvature of the surface (positive for convex and negative for concave 
curvature). To measure the turbulence levels, a DISA 55P05 normal-wire probe was 
used. The wire was statically calibrated before and after every profile using the 
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power-series approach given by Perry (1982), and temperature corrections were 
applied using the method of Abell (1977). No crossed-hot-wire measurements could 
be conducted with free-wing experiment because the boundary layer was too thin for 
adequate spatial resolution. 

In the case of the curved hill, the Preston tube diameters were 1.08 mm and 
1.26 mm, and a round Pitot tube of 0.5 mm diameter was used. The static pressure 
across the boundary layer was measured using a 1 mm thick disc-static probe of' 
10 mm diameter since the method of So & Mellor (1972) was found to be invalid in 
the regions where the surface curvature changes abruptly. The normal and crossed- 
wire probes were manufactured in-house. In each case, Wollaston wires were soldered 
to the probe and etched to give a filament diameter of 5 pm with an active length 
of 1.2-1.5 mm. The crossed-wire probe could be rotated accurately about its axis 
through 90°, enabling measurements in two perpendicular planes (referred to as the 
' UV Mode' and ' UW Mode ') to be made at a point. A dynamic calibration procedure 
(Perry 1982) was adopted for both normal and crossed wires. For normal wires, the 
dynamic calibration procedure uses the same power-series approach employed during 
- the static calibration in the free-wing experiment, and the maximum difference in 
u2 using these two methods is approximately 4 yo (Perry 1982). The crosscd-hot-wire 
probe was pitch aligned so that the ratio of the normal component of velocity to the 
streamwise component in the measurements near the wall matched that observed in 
the calibration. All calibrations and measurements were carried out on-line using a 
PDPll/lO digital computer equipped with an analog-to-digital converter. For each 
wire, four sets of 8000 samples were collected at a sampling frequency of 200 Hz. 
Further details of the calibration and data reduction procedures as well as tabulations 
of data for the hill flow are given in Baskaran & Joubert (1984). During the 
calibration, it was found necessary to filter the hot-wire signals at a frequency that 
is at least one decade above the shaking frequency of the calibrator, to avoid noise 
pick-ups due to vibrations. In order not to change the gain of the circuit during 
measurement the filter was retained and the low-pass frequency was altered to the 
maximum available, namely 10 kHz. 

3. Results and discussion 
3.1. Free wing 

The skin-friction coefficients over the free wing are shown in figure 3. The values 
inferred from the Clauser chart generally agree to within 2 % with those obtained 
using the 0.6 mm Preston tube, except near the trip wire and the separation point 
(for s > 2000 mm the error in C, is approximately 15 yo). The separation point was 
found to lie at s = 2157 mm by extrapolating the skin friction values to zero. The 
calculation method of Bradshaw & Unsworth (1974), which includes an empirical 
factor for the effects of curvature, fails to predict separation. In addition, the 
skin-friction values are overestimated somewhat. 

The other integral parameters are shown in figure 4. The displacement and 
momentum thicknesses are defined as 

6* = Jom(l -E)dn;  8 = Jom;(1-E)dn. 

The wavy nature in the initial variation of the boundary-layer thickness 6 (the wall 
distance at  which the dynamic pressure is 99 yo of the free-stream value) is probably 
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due to the influence of the trip wire. The same variation appears in the displacement 
and momentum thicknesses, but with a much smaller amplitude. All these parameters 
grow rapidly as the flow approaches separation. The shape parameter H however 
.remains at a constant value of 1.5 over most of the flow, indicating that the profiles 
are not greatly distorted except close to separation (1.5 is a typical value at this 
Reynolds number). R, is less than 5000 everywhere and low-Reynolds-number effects 
may be important (Coles 1962). 



54 V .  Baskaran, A .  J .  Smits and P.  N .  Joubert 



Turbulent flow over a curved hill. Part 1 

x 

0 

k 
0 

w 

55 



56 V .  Baskaran, A .  J .  Smits and P. N .  Joubert 

0.006 I I I I 

0 500 1000 1500 2000 2500 
s (mm) 

FIQURE 7. Skin-friction distribution over curved hill. Preston tube: 0, 1.083 mm; 0, 1.261 mm; 
0,  Clauser chart; -, calculation (Bradshaw & Unsworth 1974); ---, line for extrapolation; 
A, free wing. 

The mean velocity profiles in wall coordinates are shown in figure 5.  The 
logarithmic region is reasonably extensive at  all locations, despite the effects of severe 
pressure gradients, convex curvature and low Reynolds number. In  contrast, the 
wake component is affected greatly. In the region of favourable pressure gradient, 
the wake factor, A(U/U,) ,  varies from -0.6 to 1.0, and it is generally smaller than 
the constant-pressure-layer values (0.9-1.2) reported by Coles (1962), Purtell, 
Klebanoff & Buckley (1981) 6 Smits, Matheson & Joubert (1983) in the same 
Reynolds-number range (623-878). The behaviour of the wake factor is due mainly 
to the severe favourable pressure gradient since convex curvature would tend to 
increase the wake factor. In any case, 6/R is too small in this region (0.005) to have 
any significant effect on the wake factor. 

In  the region of adverse pressure gradient, the wake factor increases to values much 
greater than the constant-pressure-layer values of approximately 2.0 at the same R,. 
Both adverse gradient and convex curvature tend to increase the wake factor. 
However, Muck, Hoffmann & Bradshaw (1985) found that after an application of 
prolonged convex curvature (SIR = 0.01), the wake factor increased only from 1.0 
to 2.2. Therefore, the behaviour of the wake factor everywhere on the free wing 
reflects the dominant influence of pressure gradient. 

The profiles of longitudinal turbulent intensity 2 scaled with respect to 
Up,[ = Uref( 1 - C,,)i] are shown in figure 6. Since the effects of curvature are small, 
the results reflect the influence of pressure gradient. As expected, therefore, the 
intensities are reduced in the region of favourable pressure gradient 
(s > 1630 mm).The overshoot in the intensity at  s = 1349 mm is repeatable and it 
is probably related to the wavy behaviour of the integral parameters close to the trip 
wire. Such behaviour is often observed during the later stages of transition (Castro 
& Bradshaw 1976). The profiles in the region s > 1630 mm are typical of those 
observed in turbulent boundary layers experiencing adverse pressure gradients. The 
main feature is the presence of a maximum which propagates towards the edge of 
the boundary layer as the strength of the pressure gradient increases. 
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3.2. Curved hill 
The skin-friction coefficients are shown in figure 7. The values inferred from the 
Clauser chart are again found to agree with the Preston-tube values to within 2 % 
everywhere, except in the region where the surface curvature changes from concave 
to convex (called the ‘exit’ region) and close to separation (for s > 1862 mm, Cf is 
accurate to about 13%). The location of the separation point is found to lie at 
s = 2095 m by extrapolation. The skin friction over the leading-edge plate decreases 
due to the increasingly adverse pressure gradient, as expected. The values over the 
concave portion generally follow the trend of the pressure gradients. Further 
downstream, the behaviour is similar to that observed on the free wing. The 
agreement between the method of Bradshaw 6 Unsworth (1974) and the experiment 
is reasonable, considering the complexity of the flow. However, the method again fails 
to predict separation. 

The spanwise variation of skin friction is shown in figure 8. The variation of about 
2 yo at s = 596 mm is possibly due to the tunnel screens. These inhomogeneities are 
amplified at the foot of the hill and the maximum amplification occurs in the concave 
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FIGURE 9. Profiles of V and W around the concave bend over curved hill (leading-edge plate: 
8 = 596mm; 710; 867; concave bend: 1015; exit: 1139; 1183). 8, V/U,,;-%W/U,, .  Note shift 
in abscissa scale. 

section (this is not due to the decrease in the scaling value). A rapid attenuation 
follows over the region of convex curvature. 

It appears that secondary flows exist in the region of concave curvature. However, 
the spanwise variation of C, does not exhibit any regular spatial periodicity consistent 
with the presence of Taylor-Gortler vortices, as commonly observed in boundary 
layers over concave surfaces (Smits, Young & Bradshaw 1979b and Hoffmann, Muck 
& Bradshaw 1985). The absence of Taylor-Gortler vortices is also indicated by the 
measurements of Reynolds shear stresses, -E and UW (Baskaran & Joubert 1984). 
which do not vary in the spanwise direction. Instead, the secondary flow appears to 
be due to yawing of the mean streamlines, as indicated by the profiles of W shown 
in figure 9. This cross-flow appears to prevent the formation of Taylol-Gortler 
vortices. Hall (1984) showed that a similar suppression of Taylor-Gortler vortices in 
a three-dimensional laminar boundary layer over a concave surface was due to the 
dominance of the ' cross-flow ' instability mode over the Taylor-Gortler instability 
mode. One of us (V. B.), currently investigating a three-dimensional turbulent 
boundary layer over a concave surface at Imperial College, has also observed the 
absence of Taylor-Gortler vortices. In the present case, since the vortices are not 
formed over the concave region initially, whether a convex curvature following a 
concave surface can suppress these vortical motions is still open to question. In any 
case, the inhomogeneities amplified in the bend are attenuated over the convex 
region, giving the mean flow a tendency towards two-dimensionality. 

The integral parameters, shown in figure 10, all show dramatic changes in the 
concave region. In the convex region, the shape parameter falls to a value as low as 
1 .l , indicating that the profiles are considerably distorted. The static-pressure profiles 
(figure 11)  show that the normal pressure gradients follow the sense of the surface 
curvature (positive for convex and negative for concave). The profiles of V ,  shown 
earlier in figure 9 change sign between the foot of the hill and the concave bend. 

The mean velocity profiles (figure 12) display a well-defined logarithmic region, 
except in the concave bend and in the exit region. The dip below the logarithmic law 
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FIGURE 14(a, b ) .  For caption see facing page. 
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n/a 

FIGURE 14. Profiles of Reynolds stresses. (a)  ;E18/Pe, (b )  2/qef (c) G/qef (leading-edge plate: 0 ,  
a = 596 mm; 0, 710; 0, 897 (foot of the hill); concave bend: ., 1015; exit: 0,  1139; V, 1183; 
convex curvature: A, 1345; x , 1469; +, 1596; *, 1665; X ,1730; $, 1862; 0,1990). (d )  -m/qer: 
A, 1183; V, 1345 (symbols for -uv at other stations same as other components). -, 
extrapolation to determine 8,. 
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in the concave bend has been observed in a wide variety of complex flows (Smits, 
Eaton & Bradshaw 1979a; Smits et al. 1979b; Hoffmann et al. 1985 in concave flows, 
Chandrsuda & Bradshaw 1981 in a reattaching mixing layer, and Marumo, Suzuki 
& Sat0 1978 in a turbulent boundary layer perturbed by a circular cylinder). These 
dips are generally interpreted as indicating an increase in the turbulent lengthscale. 

A t  the exit, the values of C, inferred from the Clauser chart differ by 15% from 
the Preston-tube measurements. A Preston tube can give erroneous results if its 
centre lies outside the logarithmic region or if the logarithmic law is violated. In the 
latter case, even Clauser's method will fail. The observed discrepancy does not appear 
to be due to the size of the Preston tube since a much smaller one (0.5 mm diameter) 
still gave approximately the same result. However, Jones & Launder (1972), from a 
study of sink-flow boundary layers, showed that a universal logarithmic region 
is not discernible in the velocity profile if the pressure-gradient parameter 
K ( =  - v/pU3,, dpldx) exceeds a value of + 1 .O x lop6. In the region of the discrepancy, 
K varies from + 1.7 x lop6 to +2.4 x lop6, and the law of the wall is probably not 
applicable. Surprisingly, the logarithmic region re-emerges at  the next station 
(s = 1345 mm) in a clean and extensive manner, in contrast to the observations of 
Tsuji & Morikawa (1976), where the recovery of the law of the wall was reported to 
be slow. Downstream of this location, the increase in the wake factor is in the expected 
sense. Interestingly, the magnitudes of the wake factor over the convex surface are 
similar to those on the free wing, and the point of maximum deviation in A( U /  U,) 
occurs a t  nearly the same (nU,/v) for both flows. 

The profiles of 2 scaled with respect to the potential wall velocity are shown _ _  in 
figure 13. To identify the absolute changes, the profiles of the normal stress u2, v2 
and 2, and the shear stress -m, are shown scaled with respect to the reference 
velocity in figure 14. The profiles over the leading-edge plate at the first two stations 
are consistent with the behaviour expected in a mild adverse pressure gradient, and 
the changes are significant only in the inner region (n/S < 0.2). The behaviour near 
the foot of the hill where the streamlines are yawed is in qualitative agreement with 
that observed in three-dimensional boundary layers: 3 and -m decrease, and 3 
increases (Bradshaw & Pontikos 1985). In  the concave bend, all stresses increase 
significantly right across the layer. All components (except 2) display a maximum 
at n/6 = 0.2, similar to that reported by Smits et al. (1977~) .  Downstream, these 
maxima move away from the wall to n/S = 0.3 a t  the exit, where the increase in 2 
persists, while the other two components decrease across the whole layer. In  contrast, 
-uv at the exit decreases only below n/S = 0.3, while it is unchanged in the outer 
portion of the flow. 

The decreases in? a n d 2  at  the exit cannot be attributed to the effect of stabilizing 
curvature, because 3 and --uV should also decrease. The results are also inconsistent 
with the effects of a change in pressure gradient, since the normal stresses change 
right across the layer rather than just in the inner region. Instead, a redistribution 
of energy appears to occur among the normal stress components. This redistribution 
of energy to v" at the expense of the other normal stress components is something 
not typical of wall layers, where ? and 3 usually increase at the expense of 3. 
Rather, the behaviour strongly resembles that of free-shear layers affected by a wall 
constraint (Castro & Bradshaw 1976; Chandrsuda & Bradshaw 1982; Wood & 
Bradshaw 1982, 1984). 

A t  the beginning of the convex region, sharp gradients in all the Reynolds stresses 
appear close to the wall as soon as the logarithmic region reappears, and 'knee points ' 
form in the profiles where these gradients level off. The knee points gradually 

- 
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propagate towards the edge of the boundary layer as the flow proceeds downstream. 
Below the knee points, the stresses increase with downstream distance, while outside 
the knee points all the stresses decrease under the action of prolonged streamline 
curvature. But this decrease is only gradual, unlike the sudden decrease reported by 
So & Mellor (1972), Prabhu & Sundarasiva Rao (1981) and Gillis & Johnston (1983) 
in strongly curved flows. In those flows, the shear stress in the outer region even 
changed sign near the beginning of convex curvature, whereas in the present case 
the sign of --uV changes only just before separation. 

3.3. Comparison of wing and hill jlows 
The two flows exhibit many intriguing similarities and some equally interesting 
differences. For instance, the skin-friction coefficients are almost equal in the region 
1200 mm < s < 1800 mm, while the wake factors are slightly smaller in the hill flow. 
This is surprising, because the curvature parameter for the hill flow is about five times 
larger than that for the free-wing experiment and the expected decrease in the skin 
friction and increase in the wake factor for the hill flow are not observed. Furthermore, 
the location of the separation points in the two flows differed by only 5 oh of the 
free-wing chord. If the effect of convex curvature, as represented by the curvature 
parameter 8/R is indeed stronger in the hill flow, separation is expected to occur much 
earlier, since convex curvature suppresses turbulence mixing. 

Now, the wake factors are only slightly different in the two flows, while the 
skin-friction coefficients are nearly the same. But the momentum-thickness Reynolds 
numbers are widely different, even though the maximum value of U /  U, occurs almost 
all the same nU,/v in the two flows. We denote this value of nU,/v as the Coles 
thickness 8,. To a first approximation, the skin friction for a flat-plate boundary layer 
is uniquely determined by the wake factor and the momentum-thickness Reynolds 
number. The mean velocity profiles over the convex region below 8, do not appear 
to be sufficiently abnormal for this first approximation to be invalid, especially given 
that the pressure gradients are only slightly different. Then, is it possible to have 
almost the same wake factors at two widely different values of R, for a given Cf and 
streamwise pressure gradient 1 

Putting that question aside for the moment, a striking feature of the hill flow is 
that knee points in the Reynolds-stress profiles appear as soon as the logarithmic 
region recovers over the convex surface. The locations of the knee points almost 
coincide with the locations of a,, and they also move away from the wall in a manner 
that closely resembles the growth of the boundary layer on the free wing. These 
observations suggest that ( a )  an internal layer forms in the flow over the curved hill, 
and ( b )  the free-wing boundary layer is in some sense similar t o  this internal layer. 
In fact, the profiles of Reynolds stresses over the convex region of the hill exhibit 
a compelling resemblance to those generally observed in perturbed boundary layers 
(sce, for example, Tsuji & Morikawa 1976; Andreopoulos & Wood 1982). Initial 
comparisons between the two experiments showed that the 2 data below the knee 
points in the hill flow at s = 1730 mm and 1862 mm agreed well with the 2 profiles 
on the free wing at s = 1807 mm and 1936 mm respectively, supporting the concept 
that the internal layer and the free-wing boundary layer are similar but suggesting 
that the two layers have their origins at  different locations. Such a difference in the 
origins is expected, since there is no tripping device in the convex region of the hill 
and the pressure-gradient history in the flows is slightly different. 

Far downstream, however, the effects due to differences in origin should become 
negligible, and if these two flows are truly similar any differences in the behaviour 
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U l  UP, 
FIQURE 15. Comparison of mean velocity profiles: -, curved hill; 0, 0,  free wing (corrected 

for effective origin). Note shift in abscissa scale. 
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FIGURE 16. Comparison of 2 profiles:+ curved hill; 0, 0 ,  free wing (corrected for effective 
origin). Note shift in abscissa scale. 

should reflect the differences in external conditions such as pressure gradients. A t  the 
two locations where the initial comparisons were made, the pressure gradient 
parameters, K or B ( = 6 * / p q  dpldx) are nearly equal (b = 2.3 and 5.3 on the free 
wing, and 2.8 and 5.8 on the hill respectively; K = -0.23 x and -0.26 x lop6 on 
the free wing and -0.2 x lo-" and -0.3 x lo-" on the hill, respectively). Therefore, 
the difference in streamwise location can be used to define a difference in the origin 
of the two layers, and the hill-flow results are compared with those on the free wing 
74 mm further upstream (s' = s- 74). 
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FIGURE 17. (a) Internal-layer thickness. 8,: 0,  from knee points; A, from total-pressure-stream 
function plot; 0 ,  free wing (corrected for effective origin). ( b )  Coles’ thickness 8, : 0,  curved hill ; 
0,  free wing (corrected for effective origin); 0 ,  edge of the logarithmic region over the curved hill. 
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FIQURE 18. Plot of total pressure versus stream function for curved hill. Exit: 0, 8 = 1139 mm; 
0,  1183; convex curvature: A, 1345; 0 ,  1469; +, 1596; X I  1665; 0, 1730; V, 1862; 0, 1990. 

The mean velocity and turbulent-intensity profiles for the two flows, after 
correcting for the effective origin, are compared in figures 15 and 10. Where necessary, 
the free-wing profiles were interpolated to make the comparison a t  the same 
streamwise location relative to the effective origin. The results agree more closely as 
the atreamwise distance increases, and the outward spreading of the common region 
follows the growth of the internal layer in the hill flow. The differences between the 
initial profiles in the two flows reflect the different upstream histories as well as the 
differences in the vicinity of the origin. These differences are also apparent in the 
thicknesses and growth rates of the internal layer and the free-wing boundary layer, 
shown in figure 17 (a). The thickness of the internal layer 8, is determined from the 
total-pressure-stream-function plots (figure 18) as well as by linearly extrapolating 
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FIGURE 19. Internal-layer integral parameters. (a) Momentum thickness ; ( b )  displacement 
thickness; (c) shape parameter; (d )  momentum-thickness Reynolds number; (e) pressure-gradient 
parameter; A, internal layer; 0, free wing (corrected for effective origin). 

the 2 profiles below the knee point to zero (figure 14a). The values of S, derived from 
the two methods are slightly different but the overall trend in the growth rates is 
similar (see figure 17a). These trends are not surprising ; the internal layer is shrouded 
by a strong turbulent field, while the free-wing boundary layer is bounded by a 
potential flow. The streamwise variation of 8, for the two flows, together with the 
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FIGURE 20. Comparison of (a) skin-friction coefficient and (b )  wake factor: 0, curved hill; 0, free 
wing (corrected for effective origin). 

thickness of the logarithmic region in the hill flow, are shown in figure 17 b, and the 
behaviour of Si and 6, in the two layers is approximately the same. 

The integral parameters for the internal layer (denoted by the subscript i) were 
evaluated by integrating the profiles up to the point where n = 8,. These values agree 
well with the results for the wing flow (figure 19). The almost identical growth of 
momentum thickness, which is normally used to determine the origin of a boundary 
layer, indicates that the correction for the effective origin is of the right sense and 
size. The skin-friction and wake-factor distributions shown in figure 20 for the two 
flows are now consistent with each other (the higher the skin friction, lower the wake 
factor), even though the correction for the effective origin makes the agreement in 
the skin-friction distributions slightly worse. However, the differences in C, intro- 
duced by the correction for the effective origin can be accounted for if either Si or 8, 
is used instead of 6 in defining the curvature parameter; both S,/R and S,/R for the 
hill flow are smaller than in the free-wing flow. The modified curvature parameter 
ranges from approximately 0.004 to 0.016, and it can be seen that the internal layer 
suffers only mildly from the effects of curvature, and the effects of streemwise 
pressure gradients are likely to dominate. 

The momentum-thickness Reynolds numbers and the pressure-gradient parameter 
in the two flows (figure 19d,e), as well as the consistent variation of the wake factor 
with 6JR suggests that a general relation such as C, = f (Re,  A( UlU,) ,  pi, 6JR) exists. 
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FIGURE 21. Profiles at s' = 1862 mm (Cf = 0.002684). (a) Mean velocity; ( b )  longitudinal 
turbulent intensity: 0, curved hill; 0, free wing. 

This view is supported by the results shown in figure 21, where profiles of U and 2 
at s' = 1862 mm are compared. At this location, the values of Cf are equal. The 
profiles are virtually identical up to the point of maximum deviation in U/U, ,  a fact 
consistent with the suggested functional form since the variables on the right-hand 
side are also equal. At this location, the internal and free-wing boundary layers appear 
to be 'completely ' similar and independent of initial conditions. The suggested 
functional relationship implies that for a given C,, Fi, and SJR, the wake factors a t  
two widely different R, cannot be the same. Also, the internal layer appears to behave 
as an independent boundary layer with a logarithmic or wall region and a wake region 
(i.e. region between the edge of the logarithmic region and 8,). Since the mean velocity 
variations beyond 13, do not appear to contribute to the skin friction, this part of the 
profile behaves as an isolated external layer. 

Further evidence for the existence of an internal boundary layer surrounded by 
an external turbulent field comes from - -  an inspection of the flatness factors, 
I?,( = u ~ / ( u ~ ) ~ ) ,  I?,( = w~/(w~)~), and F,( = w ~ / ( w ~ ) ~ ) ,  shown in figure 22. Flatness factors 
are related to intermittency, a property often used to study interacting shear layers 
(Dean & Bradshaw 1976; Andreopoulos & Bredshaw 1980). The distributions of the 
flatness factors over the front flat plate are representative of fully developed 
turbulent boundary layers, showing near Gaussian values in the inner half of the 
layer. For a Gaussian on-off process, the flatness factor is given by 3/(intermittency 
factor). In fully developed turbulent shear layers, this relationship describes the 

- -  - -  
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FIGURE 23. Profiles of structural parameter, a,( = -Tiij/F). t 6,; 16. Note shift in ordinate scale. 

flatness-factor distribution over most of the shear-layer thickness (Wood & Bradshaw 
1982; Muck et al. 1985), and it is useful in a qualitative discussion of flatness-factor 
distributions. The extent of the near-Gaussian region extends further outward from 
the wall near the foot of the hill and in the concave bend. In  this region the flow is 
yawed, and the behaviour is similar to that reported by Bradshaw & Pontikos (1985) 
in a three-dimensional turbulent boundary layer. The extent of this near-Gaussian 
region decreases significantly at the exit, and there is a large increase in F, (a decrease 
in the intermittency) close to the wall. This increase in F, indicates that turbulence 
is relatively less intense, and that the flow in the internal layer is tending to depart 
from the fully turbulent state. However, further downstream over the convex surface, 
Fv near the wall recovers to a value close to 3, indicating a return to the fully turbulent 
state. The internal layer a t  the exit region appears to be in a transitional state, and 
the low shear-stress levels measured close to the wall in the exit region are consistent 
with this view. A similar increase in F, was indirectly detected as a decrease in 
intermittency by others in strongly accelerated flows (Simpson 1979 ; Blackwelder & 
Kovasznay 1972). Furthermore, the constant skin-friction value of 0.005 proposed 
by Narasimha & Sreenivasan (1973) for the reverse transitional state agrees well with 
the values observed a t  the exit region (s = 1139 and 1183 mm). However, the internal 
layer after this transitional state does not reach a quasi-laminar state as reported 
by these authors, and the law of the wall reappears near the wall in its usual form 
at the very next station. Since F, near the wall recovers much more slowly, the 
internal layer appears to be in an underdeveloped, turbulent state. The presence of 
the logarithmic law alone in any flow does not necessarily signify that the flow is fully 
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FIQURE 24. Mean velocity profiles around the concave bend. -, Pitot tube; A, normal 
wire; 0,  crossed wire (Cr V-Mode). Note shift in abscissa scale. 

turbulent. The slow recovery of Fw also resembles the recovery from the effect of 
tripping devices as discussed by Coles (1962). 

Downstream, all the flatness factors increase to a distinct peak value, located at 
a distance slightly smaller than 8, and close to 8,. This peak is not typical of flows 
suffering pressure gradients. Simpson, Chew & Shivaprasad (1981 ) concluded that 
pressure gradients do not alter the flatness-factor distributions significantly. Beyond 
this peak, the flatness factors decrease to a minimum before increasing steeply 
towards the local free stream. This unusual behaviour of the flatness factors, 
especially the formation of the peak close to a,, indicates that there are two distinct 
interacting turbulent zones. The distributions below the peak, when compared to the 
distributions in unperturbed boundary layers, show that in this respect the internal 
layer in the hill flow behaves as an independent boundary layer. The distribution of 
the flatness factors beyond the peak corresponds to the behaviour expected in a free 
external turbulent zone. 

The turbulent structure of the flow over the hill may be discussed using the 
parameter a,, the ratio of shear stress -Ti@ to the total turbulent kinetic energy 
q2( =2+?+2) (see figure 23). The distributions a t  the first two stations are typical 
of 'simple' shear layers, with a near-constant value of approximately 0.14. The slight 
reduction near the foot of the hill is due to the yawing of mean streamlines (Bradshaw 
& Pontikos 1985). The large increase in the bend is due to concave curvature, and 
it persists over the exit region. Further downstream over the convex surface, a ,  
decreases across the internal layer and increases across the external layer, with a 
minimum at n = 4. 

This uneven distribution of a,, especially the formation of a minimum, does not 
appear to be due to the pressure gradients, since Tsuji & Morikawa (1976) report a 
constant distribution of a ,  across the boundary layer, ranging from 0.11 to 0.16, in 
their flat-plate flow. The minimum appears instead to be due to the interaction 
between the internal and external layers. The inflexion in the mean velocity profiles 

- 
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is plotted in the physical coordinate system around the concave bend in figure 24, 
and the sense of the mean shear above the internal layer during its initial 
developmental stage supports the earlier suggestion that the external layer behaves 
as a free mixing layer. Direct numerical simulations of the complete time-dependent 
Navier-Stokes equations, (Spalart & Leonard 1985) show that a change in species 
of the large-scale structure occurs whenever there is an inflexional instability in the 
mean velocity profile. A similar change in species of large-scale structures in the 
present flow could explain the abnormal behaviour of normal stresses at the exit 
region. Since the mean streamlines converge towards the wall as the flow accelerates 
near the exit, the eddying motions in the external layer are affected by the wall 
constraint, v = 0, which sets up pressure fluctuations so that the energy is distributed 
among the normal stress components (see $3.2). The subsequent streamwise decrease 
of the structural parameter in the external layer is only gradual, unlike that found 
in other strongly curved flows (Gillis & Johnston 1983; So & Mellor 1972; Prabhu 
& Sundarasiva Rao 1981). 

4. On the perturbation in the hill flow and implications for the effects of 
convex curvature 

Thus far, it  has been shown that an internal boundary layer forms over the convex 
region of the hill. However, the perturbation responsible for its growth is yet to be 
identified. Internal layers grow whenever there is a mismatch between the shear stress 
in the vicinity of the wall and the wall shear stress inferred from the law of the wall. 
A large mismatch first occurs a t  the exit region, where the internal boundary layer 
originates. One perturbation that could produce such a mismatch is the change in 
pressure gradient, which changes the velocity and the Reynolds-stress components in 
the inner region, while leaving these quantities largely unaffected in the outer region. 
However, since the internal-flow behaviour near its origin is not consistent with that 
produced by a pressure gradient, it does not appear to be the primary mechanism. 
The abrupt change in surface curvature a t  the exit region suggests an alternative 
triggering mechanism, and this is verified below. 

In many strongly curved flows with diverse external conditions (So & Mellor 1972 ; 
Smits et al. 1979a,b; Gillis & Johnston 1983; Prabhu & Sundarasiva Rao 1981), a 
similar mismatch was found at the beginning of the curved section, with the 
subsequent appearance of an internal layer. In most of these flows, the mismatch 
could well be caused by the favourable pressure gradient that usually occurred at 
the junction between the flat and the curved surfaces. In the experiment by Gillis 
& Johnston (1983), however, the streamwise pressure gradient was kept near zero 
everywhere, and yet the mismatch still appeared at  the beginning of the curved 
section (refer to figure 12 in Gillis & Johnston 1983). Hence, a sudden change in 
surface-curvature change can provide the required perturbation. To check this, we 
have plotted the total pressure against the stream function for the flow of Gillis & 
Johnston (1983) in figure 25. The thickness of the internal layer inferred from this 
plot (13.8 mm) agrees reasonably well with that inferred from the extrapolation of 
data points below the knee in their shear-stress profile (11.6 mm). The total 
pressure-stream function plot for the hill flow (figure 18) shares a similar feature with 
that of figure 25 in that the total pressure does not change till the curved wall turns 
through a certain angle. For the Gillis & Johnston experiment, the change in total 
pressure first occurs at  30°, while in the present case the changes were first noticed 
after approximately 13" of convex curvature. The Reynolds stresses in the vicinity 
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FIQURE 25. Total pressure versus stream function plot for the strongly curved 
zero-pressure-gradient flow of Gillis & Johnston (1983). 

of the wall, however, change as soon as the step change in surface curvature occurs 
in both cases (see for example figure 2 of Gillis & Johnston 1983). This lag in the 
change in total pressure behind that of the Reynolds stresses also shows that the 
pressure gradient is not the primary cause of the evolution of the internal boundary 
layer in the hill flow. 

In the contrast to these results, the results of Gibson, Verriopoulos & Vlachos 
(1984) do not exhibit any mismatch (refer to their figure 7) and knee points are not 
seen in their turbulence profiles. However, the step change in surface change in 
surface curvature is much weaker (Ak = ( l /Rz-  l /RJ = 0.41 m-l for Gibson et al., 
and Ak = 2.2 m-l for Gillis & Johnston). 

The absence of the mismatch in mildly curved flows implies that a threshold in 
Ak is necessary to initiate an internal-layer growth. By dimensional analysis, 

(1) 

where the suffix 0 indicates the conditions upstream of the step and 8" is the 
downstream distance from the step. Hence, 

4 = f (UT0,  v, Ak, a"), 

The parameter Ak* = Ak v/UTo represents the strength of the perturbation due to the 
sudden change in surface curvature, and it will be referred to as the 'wall-curvature 
perturbation parameter'. For a given s"UTO/v, 8, U T 0 / u  is non-zero if an internal layer 
is present due to a mismatch. Values of Ak* derived from previous experiments on 
convex wall flows are listed in table 1. The data fall into two groups : mild curvature 
(where 0.066 x is 
the lowest value). The threshold should obviously lie between these limits. The values 
of Ak* near the exit region of the hill flow (0.516 x if UTo in the concave bend 
is used and 0.676 x if U7, at the first measuring station is used) are approximately 
the same as in the other strongly curved flows. In addition, since the mismatch and 
the changes in total pressure and Reynolds stresses close to the wall are the same 
as that in the zero-pressure-gradient flow of Gillis & Johnston (1983), the internal 
boundary layer must be triggered by the abrupt change in surface curvature. 

The perturbation due to a step change in curvature has some interesting impli- 
cations for the effects of convex curvature in general. Apparently, the effects of the 

is the highest value) and strong curvature (where 0.373 x 



76 V. Baskaran, A .  J .  Smits and P.  N .  Joubert 

Authors 

Gibson et aZ. (1984) 
Muck et al. (1985) 
Ramaprian & Shivaprasad (1978) 
So & Mellor (1972) 
Gillis & Johnston (1983) 

Prabhu et al. (1983) 

Present case 

Akv/U,,  x 10Q 

0.064 
0.041 
0.065 
0.620 
0.545 (1st expt) 
0.553 (2nd expt) 
0.526 (3rd expt) 
0.385 (case A l )  
0.373 (case B1) 
0.474 (case C1) 
0.516 ( U,, at Concave Bend) 
0.676 (U,, at 1st station) 

TABLE 1. Wall curvature perturbation parameter, Akv/U,,  in convex-wall boundary-layer 
experiments 

curvature-perturbation parameter Ak* and the curvature parameter 8 / R  are different 
and need to be distinguished. The effect of the former is felt close to the wall as soon 
as the curved surface begins, while the latter affects the flow significantly only far 
from the wall. All the available turbulence results in curved flows show that the 
changes in the outer flow occur only after the flow has turned through a certain 
turning angle. In a flow with a mild change in curvature, the effects of Ak* are 
negligible so that the flow does not initially undergo much structural change close 
to the wall. Prolonged mild streamline curvature eventually affects the structure in 
the outer portions of the flow to a degree that depends on the magnitude of the 
curvature parameter. In  the mildly curved flows listed in table 1, structural changes 
occur only above n/& > 0.8. In  contrast, in a flow with a strong change in surface 
curvature, the effect of Ak* is significant and it is felt very quickly in the vicinity 
of the wall. Structural changes follow immediately after the step change, and an 
internal layer forms, which isolates the flow above it (Gillis & Johnston 1983). 
Friction-dependent and friction-independent regions are formed (Prabhu, Narasimha 
& Rao 1983), regardless of the upstream-boundary-layer thickness. Therefore, the 
conventional curvature parameter SIR fails to describe the flow behaviour, and the 
appropriate parameter is 8JR or 8JR. Since the thickness of the internal layer is 
small in comparison with the radius of curvature, the skin-friction distribution over 
a strongly curved wall actually reflects the effects of prolonged mild curvature. The 
internal boundary layer does not grow all that rapidly, provided external conditions 
such as pressure gradient and local wall curvature do not change; hence, the total 
pressure, Reynolds stresses and skin-friction coefficients are unlikely to change 
quickly. This results in the apparently asymptotic or saturated behaviour reported 
in all strongly curved flows. 

5. Remarks on the studies of wind flow over hills in relation to the present 
hill flow 

Meteorological studies of wind flow over hills usually examine changes in the wind 
speed and the turbulence due to changes in surface elevation. The upwind boundary 
layer generally corresponds to a neutrally stable atmosphere, the ratio of the 
thickness of the reference boundary layer to the maximum elevation is large (8 /h  % i), 
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208 mm 

x (mm) 

FIUURE 26. Profile shape and lengthscales for the curved hill: -, actual profile; 0, Gaussian 
approximation, f(z/E) = 1/[1 < ( z / L , ) ~ ] ;  A, non-Gaussian appro&nation, &/L) = 
1/[1 + W L ~ ) ~ I .  

and the terrain conditions are simulated by means of properly scaled rough surfaces 
(for example, see Britter et al. 1981 for a discussion). In the present hill flow, since 
the aim of the study is to understand the effects of streamline curvature, these scaling 
laws were not considered. For instance, the ratio of the boundary-layer thickness on 
the leading-edge plate to the height of the hill in the present experiment is only 0.4, 
and the surface is smooth everywhere. The results of the present study should 
therefore be treated with caution, if they are to be compared to those obtained in 
either a properly simulated model experiment or field results, and ‘scale effects’ are 
likely to play a major role. However, a qualitative comparison is possible, and for 
this purpose we have used the theory of Jackson & Hunt (1975). 

Jackson & Hunt divided the flow into two regions, namely an inner constant-stress 
region (logarithmic region) and an outer region. By expressing the changes in the wind 
speed as a perturbation to  the upwind value, solutions were presented for the inner 
and outer regions using the linearized small-perturbation form of the mean 
momentum equations. Perturbations in the shear-sfress field were derived by using 
the eddy-viscosity hypothesis to obtain closure. The mean velocity distribution at 
a reference location over the level ground was expressed in the form 

UT, Y Uo(y) = -1n- for y < 6, 
K Yo 
u7, 6 Uo(y) = -1n- 
K Yo 

for y > 6, 

(3) 

(4) 

Suffix 0 denotes reference quantities in the upwind flows and K ,  yo and y are the 
K6rmBn constant (= 0.41), roughness length and distance normal to the level ground 
respectively. Using the mean velocity profile at the first measuring station in the 
present hill flow as the reference gives UT0 = 0.76 m/s and yo = 2.35 x m. It 
should be noted here that the inner logarithmic region in our reference boundary layer 
does not extend to the boundary-layer edge, unlike that specified by (3). The shape 
of the curved hill can be expressed to a good approximation as y = h ( l / l + 3 ( ~ / L ) ~ } .  
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FIGURE 27. Streamwise surface pressure and shear-stress perturbations with respect to reference 
upwind values at x / L , G  = -2. 0,  AC,,; 0, AC,w. 

The actual profile is compared with this approximation and that for the Gaussian 
hill considered by Jackson & Hunt in figure 26. The horizontal lengthscales 
corresponding to both non-Gaussian (LNG = th)  and Gaussian (LG = ?jh) distributions 
are 0.55 m and 0.45 m respectively. 

The analysis is based on small-perturbation theory and requires h 4 L such that 
the perturbation velocities are very small (6 6 1) .  The values for h/L,  the thickness 
of the inner region, and E in the present hill flow are 0.36,20 mm and 15 respectively. 
Therefore the theory is not quantitatively valid in the present case. However, 
Jackson & Hunt reported that the theory was capable of qualitatively describing any 
hill flow in terms of the perturbation variables (pressure, velocity and shear stress), 
even when the upwind-profile thickness was smaller than the height of the hill. 

To facilitate these qualitative comparisons, the changes in the non-dimensional 
wall static pressure ACpw( = C,, - C,,,) and the non-dimensional surface shear stress, 
ACT ( = C - Crw0) for the current experiment are plotted in figure 27. The change in 
sur&ce szear stress occurs before the change in static pressure, and ACT” reaches a 
maximum just ahead of the crest, as predicted by the theory. The fractional change 
in the mean velocity above the hill crest is shown in figure 28. This ratio is referred 
to as the ‘fractional speed-up ratio ’ and denoted as AS in meteorological terminology. 
The shape of the profile, especially t,he occurrence of a maximum in A S  at a small 
distance above the hill surface, is in qualitative agreement with the theory. According 
to  the analysis, the internal-layer thickness is given by the height of the maximum 
velocity perturbation. In  the present hill flow, however, the maximum velocity 
perturbation occurs well inside the present internal layer. 

Another interesting feature in wind flow over hills is the development of sharp mean 
velocity gradients near the surface a t  the crest associated with the formation of a 
local maximum in the mean velocity profiles. This maximum has been given the name 
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FIQURE 28. Profile of ‘fractional speed-up ratio’ over the hill at x/L,, = 0; ---- I y = 8,. 

‘jet ’ in meteorology. In the present hill flow such a feature is present at the exit region 
(figure 24). 

The fractional changes in Reynolds stresses are shown in figure 29. All the 
perturbation stresses are positive close to the surface and change sign more or less 
at a height where AS is a maximum. According to the theory, the whole flow is 
dominated by the changes that occur within the internal layer. In  addition, the 
perturbation shear stress should be at its maximum close to the surface and fall 
gradually to zero at the edge of the inner region. This feature is qualitatively 
reproduced in the present results, and again the pressure-gradient-perturbed inner 
region does not extend to the edge of the internal boundary layer. The decrease in 
all the stress components is consistent with the effect of prolonged convex curvature 
at the edge of the present internal layer. 

Beyond the inner region, the changes in the turbulence in wind flows over hills have 
been described using rapid-distortion theory (Britter et al. 1981) and found to be in 
agreement with experiments. For symmetric hills like the present one, rapid- 
distortion theory predicts an increase in 3 and a decrease in 2, while in the present 
case all the perturbation-stress components decrease and reach a minimum at the 
edge of the internal boundary layer. Therefore, the behaviour of turbulence above 
the inner region in the present experiment is considerably different from that 
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observed in hill-flow studies. The apparent reason for this difference is the effect of 
prolonged convex streamline curvature, as all the stress components consistently 
decrease. In  contrast, the curvature effect was found to be negligible for the slender 
Gaussian hill considered by Jackson & Hunt (1975). 

6. Conclusions 
The results from the experiments on a biconvex ‘free wing’ and a two-dimensional 

‘curved hill ’ show that an internal boundary layer grows over the hill. Its behaviour 
is similar to that of the boundary layer growing over the free wing. The flatness-factor 
distributions, together with the behaviour of the structural parameter a,, show that 
the internal boundary layer is shrouded by an external free turbulent flow. The 
behaviour of the external flow is in qualitative agreement with that reported in free 
turbulent flows affected by a wall constraint. Apparently, a bifurcation occurs in the 
initial boundary-layer structure ahead of the convex region and the internal and 
external layers behave almost completely independently. 

The internal layer forms in a region where the flow experiences a reverse 
transitional state, without undergoing relaminarization, followed by a recovery to 
a fully developed turbulent state. After the recovery of the logarithmic region and 
the flatness factor further downstream, the flow in the inner region of the internal 
layer is mainly affected by the changes in pressure gradient, while the prolonged mild 
streamline curvature affects the outer or wake region of the internal layer, in addition 
to the effects induced by the external free turbulent flow. The ratio of the 
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internal-layer thickness to the surface radius of curvature appears to represent the 
effects of prolonged convex curvature more accurately than the conventional ratio 
based on the overall thickness. The internal layer appears to determine the skin- 
friction distribution and the process of separation independently of the presence of 
the external layer. 

The initial transitional state of the internal layer, and the fact that the streamwise 
total pressure change lags behind the changes in the Reynolds stresses near the origin 
of the internel layer show that the pressure gradient is not the primary perturbation 
mechanism responsible for initiating the internal-layer growth. It appears, in fact, 
that it is the abrupt change in surface curvature (concave to convex) that triggers 
the internal-layer growth. 

Dimensional analysis shows that the perturbation due to a step change in surface 
curvature could be represented by a ' wall-curvature-perturbation parameter', Ak*. 
The absence of internal layers in the mildly curved flows suggests that a threshold 
in Ak* must be exceeded before internal layers are formed. The available data suggest 
a lower limit for the threshold value of 0.373 x 

The effect of the wall-curvature-perturbation parameter Ak* is different from the 
effect of the curvature parameter SIR. The wall-curvature-perturbation parameter 
describes the flow close to the surface immediately following the change, while the 
curvature parameter describes the behaviour in the region further away from the wall. 
The changes due to the effect of the curvature parameter begin only after the flow 
turns through some angle. High levels of Ak* affect the structure in the vicinity of 
the step, and result in the growth of an internal layer. Since it is this internal layer 
that determines the skin friction, and since its thickness is relatively small compared 
to the radius of curvature, the prolonged streamline curvature has only a mild effect 
on the subsequent flow behaviour. In  contrast, in a mildly curved flow with a small 
Ak* the effect of the step change in wall curvature is negligible and the flow does not 
exhibit any significant changes in the structure near the step. This is probably why 
a mildly curved flow behaves differently from a strongly curved flow. Once formed, 
the internal layer determines the skin-friction distribution, and a saturated behaviour 
results, as observed in all strongly curved flows. 

A qualitative comparison with meteorological studies of the flow over hills shows 
that the internal layer in the present case is thicker than the pressure-gradient- . 
perturbed inner region described in meteorological flows. However, the changes 
within this inner region are consistent with those reported in both experimental 
studies and the theory of Jackson & Hunt (1975) for wind flow over hills. The changes 
above this inner region in the present case are not consistent with those predicted 
by the rapid-distortion analysis, unlike the case in meteorological flows. However, 
any comparison should be performed with care since the scaling laws describing the 
dynamic similitude of natural wind flows are not obeyed in the present experiments. 
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